12 research outputs found

    Study on serious road traffic injuries in the EU

    Get PDF
    The general objective of this study is to collect knowledge that will enable the future identification of measures for effective prevention of serious road traffic injuries. The specific objective is to provide fact-based analysis on the most common circumstances and types of road traffic crashes leading to serious injuries of MAIS3+ severity. More specifically, the study is directed at providing an understanding of the main circumstances and factors that affect the emergence of serious road traffic injuries, medically coded as MAIS3+, for the following road traffic modes in the EU: pedestrians, bicyclists, motorcyclists and car occupants

    Burden of injury of serious road injuries in six EU countries

    Get PDF
    BACKGROUND: Information about the burden of (non-fatal) road traffic injury is very useful to further improve road safety policy. Previous studies calculated the burden of injury in individual countries. This paper estimates and compares the burden of non-fatal serious road traffic injuries in six EU countries/regions: Austria, Belgium, England, The Netherlands, the RhĂ´ne region in France and Spain. METHODS: It is a cross-sectional study based on hospital discharge databases. POPULATION: of study are patients hospitalized with MAIS3+ due to road traffic injuries. The burden of injury (expressed in years lived with disability (YLD)) is calculated applying a method that is developed within the INTEGRIS study. The method assigns estimated disability information to the casualties using the EUROCOST injury classification. RESULTS: The average burden per MAIS3+ casualty varies between 2.4 YLD and 3.2 YLD per casualty. About 90% of the total burden of injury of MAIS3+ casualties is due to lifelong consequences that are experienced by 19% to 33% of the MAIS3+ casualties. Head injuries, spinal cord injuries and injuries to the lower extremities are responsible for more than 90% of the total burden of MAIS3+ road traffic injuries. Results per transport mode differ between the countries. Differences between countries are mainly due to differences in age distribution and in the distribution over EUROCOST injury groups of the casualties. CONCLUSION: The analyses presented in this paper can support further improvement of road safety policy. Countermeasures could for example be focused at reducing skull and brain injuries, spinal cord injuries and injuries to the lower extremities, as these injuries are responsible for more than 90% of the total burden of injury of MAIS3+ casualties

    Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes

    Get PDF
    This study set out to evaluate the effectiveness of low speed autonomous emergency braking (AEB) technology in current model passenger vehicles, based on real-world crash experience. The Validating Vehicle Safety through Meta-Analysis (VVSMA) group comprising a collaboration of government, industry consumer organisations and researchers, pooled data from a number of countries using a standard analysis format and the established MUND approach. Induced exposure methods were adopted to control for any extraneous effects. The findings showed a 38 percent overall reduction in rear-end crashes for vehicles fitted with AEB compared to a comparison sample of similar vehicles. There was no statistical evidence of any difference in effect between urban (≤60km/h) and rural (>60km/h) speed zones. Areas requiring further research were identified and widespread fitment through the vehicle fleet is recommended

    Implications of estimating road traffic serious injuries from hospital data

    Get PDF
    To determine accurately the number of serious injuries at EU level and to compare serious injury rates between different countries it is essential to use a common definition. In January 2013, the High Level Group on Road Safety established the definition of serious injuries as patients with an injury level of MAIS3+(Maximum Abbreviated Injury Scale). Whatever the method used for estimating the number or serious injuries, at some point it is always necessary to use hospital records. The aim of this paper is to understand the implications for (1) in/exclusion criteria applied to case selection and (2) a methodological approach for converting ICD (International Classification of Diseases/Injuries) to MAIS codes, when estimating the number of road traffic serious injuries from hospital data. A descriptive analysis with hospital data from Spain and the Netherlands was carried out to examine the effect of certain choices concerning in- and exclusion criteria based on codes of the ICD9-CM and ICD10. The main parameters explored were: deaths before and after 30 days, readmissions, and external injury causes. Additionally, an analysis was done to explore the impact of using different conversion tools to derive MAIS3 + using data from Austria, Belgium, France, Germany, Netherlands, and Spain. Recommendations are given regarding the in/exclusion criteria and when there is incomplete data to ascertain a road injury, weighting factors could be used to correct data deviations and make more real estimations

    Identification of key risk factors related to serious road injuries and their health impacts, deliverable 7.4 of the H2020 project SafetyCube

    Get PDF
    Because of their high number and slower reduction compared to fatalities, serious road injuries are increasingly being adopted as an additional indicator for road safety, next to fatalities. Reducing the number of serious road injuries is one of the key priorities in the EU road safety programme 2011- 2020. In 2013, the EU Member States agreed on the following definition of serious road traffic injuries: a serious road traffic injury is a road traffic casualty with a Maximum AIS level of 3 or higher (MAIS3+). One recommendation created by the EU SUSTAIN project was to conduct “A more detailed study of the causes of serious road injuries, [which] could reveal more specific keys to reduce the number of serious injuries in the EU”. This recommendation is addressed through the identification of crashrelated causation and contributory factors for selected groups of casualties with relatively many MAIS3+ casualties compared to fatalities and groups with a relatively high burden of injury of MAIS3+ casualties. This deliverable is made up of two parts brought together in order to determine the main contributory factors detailed above. This two-step approach initially identifies groups of casualties that are specifically relevant from a serious injury perspective using national level collision and hospital datasets from 6 countries. Following the determination of groups of interest a detailed analysis of the selected groups using indepth data was conducted. On the basis of in-depth data from 4 European countries the main contributory and causal factors are determined for the selected MAIS3+ casualty groups. Alongside the three proceeding deliverables that have formed the major outputs of WP7, deliverable D7.4 is aimed at addressing serious injury policy at an EU levels. As such this report is broadly aimed at policy makers although the inclusion of results from in-depth data analysis also provides information relevant to stakeholders, particularly those working in vehicle design and manufacture or road user behaviour

    Practical guidelines for the registration and monitoring of serious traffic injuries, D7.1 of the H2020 project SafetyCube

    Get PDF
    BACKGROUND AND OBJECTIVES Crashes also cause numerous serious traffic injuries, resulting in considerable economic and human costs. Given the burden of injury produced by traffic, using only fatalities as an indicator to monitor road safety gives a very small picture of the health impact of traffic crashes, just the tip of the iceberg. Moreover, in several countries during the last years the number of serious traffic injuries has not been decreasing as fast as the number of fatalities. In other countries the number of serious traffic injuries has even been increasing (Berecki-Gisolf et al., 2013; IRTAD Working Group on Serious Road Traffic Casualties, 2010; Weijermars et al., 2015).Therefore, serious traffic injuries are more commonly being adopted by policy makers as an additional indicator of road safety. Reducing the number of serious traffic injuries is one of the key priorities in the road safety programme 2011-2020 of the European Commission (EC, 2010). To be able to compare performance and monitor developments in serious traffic injuries across Europe, a common definition of a serious road injury was necessary. In January 2013, the High Level Group on Road Safety, representing all EU Member States, established the definition of serious traffic injuries as road casualties with an injury level of MAIS ≥ 3. The Maximum AIS represents the most severe injury obtained by a casualty according to the Abbreviated Injury Scale (AIS). Traditionally the main source of information on traffic accidents and injuries has been the police registration. This provides the official data for statistics at national and European level (CARE Database). Data reported by police usually is very detailed about the circumstances of the crash particularly if there are people injured or killed. But on the other hand police cannot assess the severity of injuries in a reliable way, due, obviously to their training. Therefore, police based data use to classify people involved in a crash as fatality, severe injured if hospitalised more than 24 hours and slight injured if not hospitalised. Moreover, it is known that even a so clear definition as a fatality is not always well reported and produces underreporting. This is due to several factors such as lack of coverage of police at the scene or people dying at hospital not followed by police (Amoros et al., 2006; Broughton et al., 2007; Pérez et al., 2006). Hospital records of patients with road traffic injuries usually include very little information on circumstances of the crash but it does contain data about the person, the hospitalisation (date of hospitalisation and discharge, medical diagnosis, mechanism or external cause of injury, and interventions). Hospital inpatient Discharge Register (HDR) offers an opportunity to complement police data on road traffic injuries. Medical diagnoses can be used to derive information about severity of injuries. Among others, one of the possible scales to measure injury severity is the Abbreviated Injury Scale (AIS). The High Level group identified three main ways Member States can collect data on serious traffic injuries (MAIS ≥ 3): 1) by applying a correction on police data, 2) by using hospital data and 3) by using linked police and hospital data. Once one of these three ways is selected, several additional choices need to be made. In order to be able to compare injury data across different countries, it is important to understand the effects of methodological choices on the estimated numbers of serious traffic injuries. A number of questions arise: How to determine the correction factors that are to be applied to police data? How to select road traffic casualties in the hospital data and how to derive MAIS ≥ 3 casualties? How should police and hospital data be linked and how can the number of MAIS ≥ 3 casualties be determined on the basis of the linked data sources? Currently, EU member states use different procedures to determine the number of MAIS ≥ 3 traffic injuries, dependent on the available data. Given the major differences in the procedures being applied, the quality of the data differs considerably and the numbers are not yet fully comparable between countries. In order to be able to compare injury data across different countries, it is important to understand the effects of methodological choices on the estimated numbers of serious traffic injuries. Work Package 7 of SafetyCube project is dedicated to serious traffic injuries, their health impacts and their costs. One of the aims of work package 7 is to assess and improve the estimation of the number of serious traffic injuries. The aim of this deliverable (D7.1) is to report practices in Europe concerning the reporting of serious traffic injuries and to provide guidelines and recommendations applied to each of the three main ways to estimate the number of road traffic serious injuries. Specific objectives for this deliverable are to: Describe the current state of collection of data on serious traffic injuries across Europe Provide practical guidelines for the estimation of the number of serious traffic injuries for each of the three ways identified by the High Level Group Examine how the estimated number of serious traffic injuries is affected by differences in methodology

    Physical and psychological consequences of serious road traffic injuries, deliverable 7.2 of the H2020 project SafetyCube

    Get PDF
    SafetyCube aims to develop an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select the most appropriate strategies, measures and cost-effective approaches to reduce casualties of all road user types and all severities. Work Package 7 of SafetyCube is dedicated to serious road traffic injuries, their health impacts and their costs. This Deliverable discusses health impacts of (serious) road traffic injuries

    Description of data-sources used in SafetyCube. Deliverable 3.1 of the H2020 project SafetyCube

    Get PDF
    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate strategies, measures and cost-effective approaches to reduce casualties of all road user types and all severities. This deliverable describes the available data in the form of an inventory of databases that can be used for analyses within the project. Two general types of data are available: one describing the involvement of different components for the road safety (vehicles, infrastructure, and the road user) and one describing the injury outcomes of a crash. These two database categories are available to the partners of SafetyCube and gathered in two excel tables. One table contains traffic databases (accident and naturalistic driving studies) and the second table contains injury databases. The tables contain information on 58 and 35 variables, respectively. The key information describing the databases that was needed for the inventory were items such as: Type of data collected (crashes, injuries, etc.) Documentation of the variables Sampling criteria for the data collected SafetyCube partners with access to the data Extent of data access (raw data vs. summary tables) The tables contain 36 traffic accident databases, five naturalistic driving studies or field-tests and 22 injury databases where of four were coded in both sheets
    corecore